3 minute read

Building on the univariate delta method

Gradient matrix of a vector function

Say we have some vector-valued function

\[f: \mathbb{R}^d \to \mathbb{R}^k\]

This is a function that takes a $d$ dimensional vector and spits out a $k$-dimensional vector. A special case could be when $k=1$ and we have a scalar-valued function of a vector.

Then the gradient matrix of this function $f$, denoted by $\nabla f$ is the $d\times k$ matrix

\[\begin{aligned} \nabla f&= \begin{pmatrix} \vert & \vert & \vert & \vert\\ \nabla f_1 & \nabla f_2 & \dots & \nabla f_k\\ \vert & \vert & \vert & \vert \end{pmatrix}\\ &=\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_k}{\partial x_1} \\ \vdots & \dots & \vdots\\ \frac{\partial f_1}{\partial x_d} & \dots & \frac{\partial f_k}{\partial x_d} \\ \end{pmatrix} \end{aligned}\]

which is also the transpose of the Jacobian matrix $\mathbf{J}_f$

Example

\[f: \mathbb{R}^3 \to \mathbb{R}^2\]

and

\[f(x, y, z) = \begin{pmatrix} x+y \\ xy^2+z \end{pmatrix}\]

Then the gradient matrix would be

\[\begin{aligned} \nabla f &=\begin{pmatrix} \frac{\partial f_x}{\partial x} & \frac{\partial f_y}{\partial x} \\ \frac{\partial f_x}{\partial y} & \frac{\partial f_y}{\partial y} \\ \frac{\partial f_x}{\partial z} & \frac{\partial f_y}{\partial z} \\ \end{pmatrix}\\ &=\begin{pmatrix} 1 & y^2 \\ 1 & 2xy \\ 0& 1 \\ \end{pmatrix} \end{aligned}\]

Multivariate Delta Method

We have a sequence of random vectors $\mathbf{T}1, \dots, \mathbf{T}_n$, which we can also denote as $(\mathbf{T}_n){n\ge 1}$, and this sequence satisfies

\[\sqrt{n}(\mathbf{T}_n-\vec{\theta}) \xrightarrow[n \to \infty]{(\mathbb{d})} \mathbf{T}\]

for some $\vec{\theta} \in \mathbb{R}^d$

Then if we have some function

\[\mathbf{g}: \mathbb {R}^ d \to \mathbb {R}^ k\]

which is continously differentiable at $\vec{\theta}$/ Then, for any vector $\mathbf{t}\in \mathbb{R}^d$, the first-order multivariate Taylor expansion at $\vec{\theta}$ gives

\[\displaystyle \mathbf{g}\left(\mathbf{t}\right) = \mathbf{g}(\vec{\theta }) + \nabla \mathbf{g}(\vec{\theta })^ T \left(\mathbf{t}- \vec{\theta }\right) + \left\| \mathbf{t}- \vec{\theta } \right\| \, \mathbf{u}(\mathbf{t})\]

where $\mathbf{u}(\mathbf{t})\to \mathbf{0}$ as $\mathbf{t}\to\vec{\theta}$

If now we replace $\mathbf{t}$ with a random vector $\mathbf{T}$. rearrange and multiply both sides by $\sqrt{n}$:

\[\displaystyle \displaystyle \sqrt{n}\left(\mathbf{g}\left(\mathbf{T}_ n\right) -\mathbf{g}(\vec{\theta }) \right)= \displaystyle \nabla \mathbf{g}(\vec{\theta })^ T \left(\sqrt{n}\left(\mathbf{T}_ n - \vec{\theta }\right)\right) + \left\| \sqrt{n}(\mathbf{T}_ n - \vec{\theta }) \right\| \, \mathbf{u}(\mathbf{T}_ n).\]

First term

Considering the convergence of each term on the right as $n \to \infty$, then firstly by definition

\[\displaystyle \displaystyle \displaystyle \sqrt{n} \left(\mathbf{T}_ n - \vec{\theta } \right) \xrightarrow [n\to \infty ]{(d)} \mathbf{T},\]

which also implies

\[\displaystyle \displaystyle \left(\mathbf{T}_ n - \vec{\theta } \right) \xrightarrow [n\to \infty ]{(d)/(p)} \mathbf{0}.\]

or

\(\displaystyle \displaystyle \mathbf{T}_n \xrightarrow [n\to \infty ]{(d)/(p)} \vec{\theta}\) (since convergence in distribution is stronger than in probability)

The first term, $\, \left(\nabla \mathbf{g}(\vec{\theta })\right)^ T \left(\sqrt{n}\left(\mathbf{T}_ n - \vec{\theta }\right)\right)\,$, is a continuous function of $\left(\sqrt{n}\left(\mathbf{T}_ n - \vec{\theta }\right)\right)$, hence by the continous mapping theorem

\[\displaystyle \displaystyle \left(\nabla \mathbf{g}(\vec{\theta })\right)^ T \left(\sqrt{n}\left(\mathbf{T}_ n - \vec{\theta }\right)\right) \xrightarrow [n\to \infty ]{(d)}\left(\nabla \mathbf{g}(\vec{\theta })\right)^ T\, \mathbf{T}\]

Second term

For the second term, the first factor $\left| \sqrt{n}\left(\mathbf{T}_ n - \vec{\theta }\right) \right|$ is again a continuous function of $\sqrt{n}\left(\mathbf{T}_ n - \vec{\theta }\right)$ , and therefore

\[\displaystyle \displaystyle \left\| \sqrt{n}\left(\mathbf{T}_ n - \vec{\theta }\right) \right\| \xrightarrow [n\to \infty ]{(d)}\left\| \mathbf{T} \right\| \qquad \text {by continuous mapping theorem}.\]

The second factor in the second term is a continuous function of $\mathbf{T}_n$

\[\displaystyle \displaystyle \mathbf{u}\left(\mathbf{T}_ n\right)\xrightarrow [n\to \infty ]{(d)/(p)} \mathbf{u}(\vec{\theta })\, =\, \mathbf{0}\qquad \text {by continuous mapping theorem}.\]

and by the fact that

\[\displaystyle \displaystyle \mathbf{T}_n \xrightarrow [n\to \infty ]{(d)/(p)} \vec{\theta}\]

By (multivariate) Slutsky theorem, the entire second term converges to $\mathbf{0}$

\[\displaystyle \left\| \sqrt{n}\left(\mathbf{T}_ n - \vec{\theta }\right) \right\| \, \mathbf{u}(\mathbf{T}_ n)\xrightarrow [n\to \infty ]{(d)/\mathbf{P}}\left\| \mathbf{T} \right\| (\mathbf{0})\, =\, \mathbf{0}.\]

Combining

Finally, applying the (multivariate) Slutsky theorem to the sum of the two terms gives:

\[\begin{aligned} \displaystyle \nabla \mathbf{g}(\vec{\theta })^ T \left(\sqrt{n}\left(\mathbf{T}_ n - \vec{\theta }\right)\right) &+ \left\| \sqrt{n}\left(\mathbf{T}_ n - \vec{\theta }\right) \right\| \, \mathbf{u}(\mathbf{T}_ n)\\ &\xrightarrow [n\to \infty ]{(d)}\nabla \mathbf{g}(\vec{\theta })^ T \mathbf{T}+ \mathbf{0}\, =\, \nabla \mathbf{g}(\vec{\theta })^ T \mathbf{T}. \end{aligned}\]

and we have

\[\displaystyle \displaystyle \sqrt{n}\left(\mathbf{g}\left(\mathbf{T}_ n\right) -\mathbf{g}(\vec{\theta }) \right)= \, \nabla \mathbf{g}(\vec{\theta })^ T \mathbf{T}.\]

Applying this to the sample average

If now

\[\mathbf{T}_n=\bar{\mathbf{X}}_n\]

the sample average, and

\[\, \vec{\theta }=\mathbb E[\mathbf{X}].\, \,\]

then the multivariate CLT gives

\[\mathbf{T}\sim \mathcal{N}_d(\mathbf{0}, \Sigma_{\mathbf{X}})\]

and so in this case the delta method gives

\[\begin{aligned} \displaystyle \displaystyle \sqrt{n} \left(\mathbf{g}(\bar{\mathbf{X}}_ n) - \mathbf{g}(\mathbf{\mu}) \right) & \xrightarrow [n\to \infty ]{(d)} \nabla \mathbf{g}(\mathbf{\mu})^T \mathcal{N}_d(\mathbf{0}, \Sigma_{\mathbf{X}})\,\\ & \sim \, \displaystyle \mathcal{N}_d\left(\mathbf{0}, \nabla \mathbf{g}(\mathbf{\mu})^ T \Sigma _{\mathbf{X}} \nabla \mathbf{g}(\mathbf{\mu})\right) \end{aligned}\]

where the last step follows from rules for affine transformations of the multidimensional Gaussian.

Comments